Inference in hidden Markov models I: Local asymptotic normality in the stationary case

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference in Hidden Markov Models I: Local Asymptotic Normality in the Stationary Case

Following up on Baum and Petrie (1966) we study likelihood based methods in hidden Markov models, where the hiding mechanism can lead to continuous observations and is itself governed by a parametric model. We show that procedures essentially equivalent to maximum likelihood estimates are asymptotically normal as expected and consistent estimates of their variance can be constructed, so that th...

متن کامل

Local Asymptotic Normality of Ranks and Covariates in Transformation Models

In this paper we exhibit an important but rather complicated example to which the Le Cam-Yang methods may, after some work, be applied. Semiparametric transformation models arise quite naturally in survival analysis. Specifically, let (Z1, T1), (Z2, T2), . . . , (Zn, Tn) be independent and identically distributed with Z, a vector of covariates, having distribution H, and T real. We suppose ther...

متن کامل

Factorized Asymptotic Bayesian Hidden Markov Models

This paper addresses the issue of model selection for hidden Markov models (HMMs). We generalize factorized asymptotic Bayesian inference (FAB), which has been recently developed for model selection on independent hidden variables (i.e., mixture models), for time-dependent hidden variables. As with FAB in mixture models, FAB for HMMs is derived as an iterative lower bound maximization algorithm...

متن کامل

Asymptotic smoothing errors for hidden Markov models

In this paper, the asymptotic smoothing error for hidden Markov models (HMMs) is investigated using hypothesis testing ideas. A family of HMMs is studied parametrised by a positive constant , which is a measure of the frequency of change. Thus, when 0, the HMM becomes increasingly slower moving. We show that the smoothing error is ( ). These theoretical predictions are confirmed by a series of ...

متن کامل

Stochastic variational inference for hidden Markov models

Variational inference algorithms have proven successful for Bayesian analysis in large data settings, with recent advances using stochastic variational inference (SVI). However, such methods have largely been studied in independent or exchangeable data settings. We develop an SVI algorithm to learn the parameters of hidden Markov models (HMMs) in a time-dependent data setting. The challenge in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 1996

ISSN: 1350-7265

DOI: 10.3150/bj/1178291719